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ANNOTATED REGRESSION OUTPUT: 
How to understand and interpret regression tables? 

 
 

 
Dependent variable = effective number of parties elected in a parliament 
Observations = 615 elections in 82 democracies, 1945-2005 

 
 
VARIABLES AND THEIR TYPES 
 
The first column lists independent variables (X), which are also frequently referred to as 
‘explanatory variables’, ‘covariates’ and ‘predictor variables’. In our models, the number 
of MPs elected in a constituency, economic inequality, ethnic fragmentation, federal 
system, GDP per capita and population are all independent variables. The researchers 
included them in the regression models because there are theoretical reasons to believe 
that they can have an impact on the dependent variable (Y), which is the effective 
number of parties in parliament. Model 1 has only one independent variable (No. of MPs 
elected in a constituency), whereas Model 2 has six independent variables (No. of MPs 
elected in a constituency, economic inequality, ethnic fragmentation, federal system, 
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GDP per capita and population). This means that Model 1 is a simple regression model, 
whereas Model 2 is a multiple regression model.   
 
AIM OF REGRESSION ANALYSIS 
 
The main goal of regression analysis is to estimate the effects of one or more independent 
variables on the dependent variable. Here, our key research interest is how the number of 
MPs elected in a constituency affects the number of parties in parliament. Number of 
MPs is therefore our key independent variable, i.e. the independent variable that is of 
particular interest. It is common for researchers, however, to include additional 
independent variables (control variables), which might also influence the dependent 
variable but are not of main interest to the researcher. In Model 2, economic inequality, 
ethnic fragmentation, federal system, GDP per capita and population are all control 
variables.  
 
OMITTED VARIABLE BIAS 
 
The main reason for including ‘controls’ in the model is to reduce the so-called omitted 
variable bias, which can occur when a model is incorrectly specified, i.e., when 
researchers leave out one or more explanatory variables that have an effect on both the 
dependent and independent variables. In our model, for example, we include a control 
variable ‘Ethnic fragmentation’ which – if unaccounted for – may confound the ‘true’ 
relationship between the number of MPs in a constituency (our key independent variable) 
and the effective number of parties (our dependent variable). Not only could high ethnic 
fragmentation lead to a higher number of parties in parliament (for example, there could 
be one party in parliament for each ethnic group in society), but highly fragmented 
societies might also adopt a specific type of electoral system (such as a proportional 
electoral system with high district magnitude). If these assumptions are correct and we 
omit ethnic fragmentation from the model, the results in our regression results table might 
be flawed, as we failed to account for an explanatory variable that has a very relevant 
impact on our dependent and another independent variable. It is therefore crucial that 
researchers include ethnic fragmentation in the model and show that the relationship 
between the key X and Y is not ‘confounded’ or ‘spurious’ but remains even after 
‘controlling’ (accounting) for ethnic fragmentation. Not surprisingly, control variables 
are often called confounding variables. In our case, the estimates of the key X remain 
similar even after we control for ethnic fragmentation and three other potential 
confounders. We therefore can be reasonably confident that ethnic fragmentation (and 
GDP per capita, population, federal system and economic inequality) is not ‘driving’ 
(causing) the estimates in Model 1.   
 
INTERPRETATION OF THE COEFFICIENTS 
 
The coefficients are the estimates of the magnitude (size) of the effect of the Xs on the 
Y. They quantify how much Y changes when the independent variable increases by one 
unit while holding all other Xs constant. For example, we estimate in Model 2 that one 
unit increase in the number of MPs in a constituency leads to a 0.010 unit increase in the 
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effective number of parties in parliament (Y) holding economic inequality, ethnic 
fragmentation, federal system, GDP per capita and population constant. Notice that the 
sign in front of the coefficient indicates the direction of the effect. While the number of 
MPs in a constituency has a positive effect on the number of parties, the federal system 
variable has a negative coefficient sign (-0.518) and therefore a negative effect. The 
coefficient of the federal system variable can be interpreted as follows: holding all other 
independent variables constant, having a federal state structure as opposed to not having a 
federal state structure leads to a 0.518 decrease in the effective number of parties. Please 
note that we phrase the interpretation of the federal system variable differently from the 
interpretation of the Number of MPs variable, as the latter is a continuous variable 
whereas the former is a dichotomous (aka dummy, taking a value of either 0 or 1) 
variable. 
 
Please note as well that, whenever you interpret an independent variable out of a multiple 
regression model, you need to add ‘holding all other variables constant’ to your 
interpretation, to make clear that more than one variable has been included in the 
analysis.   
 
CONSTANT 
 
The constant (intercept) denotes the expected value of the dependent variable if we hold 
all independent variables at 0. Note, however, that this interpretation is not always 
meaningful. For example, a country’s population size is unlikely to be 0. It therefore 
might be better to refer to the constant as a number which tells you where the regression 
line (or plane) meets the Y-axis.  
 
REGRESSION EQUATION 
 
As we already mentioned above, the regression analysis helps us to understand how one 
or more variables (X) affect another (Y). More specifically, it helps the researcher to 
estimate how the Y changes when one X is varied (changes its value) while the other Xs 
are held constant (fixed). To this end, researchers estimate the following equations: 
 
Y = a + b * X, which is the simple regression equation, used for simple regression models 

 
and 
   
Y = a + b1 * X1  + b2 * X2  + b3 * X3 ..., which is the multiple regression equation, used 
for multiple regression models. 
 
 
Y is the dependent variable, X denotes independent variables, a is the constant and b 
refers to the coefficients of the independent variables. 
 
Using the results in Model 2, the above regression equation can therefore be re-written 
as: 
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Effective number of parties = 3.418  +  0.010 * Number of MPs  + (- 0.019) * Economic 
Inequality  +  1.373*Ethnic Fragmentation + … 
 
The following graph illustrates the estimated relationship between our key X and the Y as 
estimated in Model 1:  

 

As we increase the number of MPs in a constituency, the effective number of parties 
increases too. With 0 MPs in the district, the estimate of the effective number of parties 
equals 3.215. Note, however, that this would only be a meaningful interpretation if we 
had districts with 0 MPs, which, in real life, is highly unlikely. We therefore will leave the 
constant without interpretation. The graph also shows that a one unit increase in the 
number of MPs in a constituency (e.g. moving from 1 MP to 2 MPs) leads to a 0.012 unit 
increase in the effective number of parties. Since our model is linear, the 0.012 increase 
in our Y also occurs when we increase the number of MPs from 2 to 3, 3 to 4, 4 to 5 and 
so on.   

 
STATISTICAL SIGNIFICANCE 
 
While obtaining the estimates of the effect of X on Y is one of the main goals of 
regression analysis, it is equally important to estimate how sure the researcher can be that 
their results are genuine and not due to a ‘luck.’ For this purpose, researchers develop 
statistical tests and calculate how likely it is that the estimated coefficients are genuinely 
different from zero. The stars indicate the level of statistical significance for every 
variable in the model. If an X is statistically significant, it means that it has a relevant 
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effect on the Y (it matters for the phenomenon we are trying to explain). If an X is not 
statistically significant, it means that it does not have a relevant effect on the Y (it does 
not matter for the phenomenon we are trying to explain). If there are no stars next to the 
coefficient (see the population variable), the independent variable is not statistically 
significant (despite the fact that the coefficient itself is different from zero). The more 
stars there are next to the coefficient, the higher is the level of statistical significance, i.e. 
the more confident we can be that the independent variable has a genuine effect on the 
dependent variable and, hence, that our estimate is not due to random chance. However, 
keep in mind that even highly significant result can be spurious due to omitted variable 
bias (see above). There are different ways of denoting statistical significance. While some 
researchers use letters and others symbols, the most common is a ‘star system’, where 
three stars indicate high significance and one star indicates borderline significance. Three 
stars indicate that the variable has a statistically significant effect at the 99% level, i.e. we 
can be confident at the 99% significance level that the independent variable has a relevant 
effect on the dependent variable. Two stars indicate the 95% level of statistical 
significance and one star indicates the 90% level of statistical significance.  
 
STANDARD ERROR 
 
Every coefficient has its own standard error, which is displayed in parentheses 
underneath the coefficient. The calculation of the standard error may be complicated and 
standard errors can be difficult to understand. It is best to think of the standard error as a 
measure of error in the calculation of every coefficient. A more advanced definition is 
that the standard error is an estimate of the standard deviation of the coefficients. The 
smaller the standard error in comparison to the coefficient size, the more confident we 
can be that there is a relevant relationship between the independent and dependent 
variable. In this context, note that standard errors which are large in comparison to the 
coefficient size will always result in low statistical significance or even no statistical 
significance at all. This is not very surprising given that researchers base their 
calculations of statistical significance on the ratio of the coefficient to its standard error.  
 
R-SQUARED 
 
Finally, researchers estimate the explanatory power of their models, i.e. how closely their 
models fit the data. R-squared therefore tells you how much of the variation in the 
dependent variable is explained by all the independent variables included in the model (as 
opposed to statistical significance which refers to the relationship between an X and the 
Y). R-squared values range between 0 and 1, and thus can be easily translated into 
percentages of explained variation of the dependent variable. Here, Model 1 explains 6% 
of the variation of the dependent variable, whereas Model 2 explains 11% of the variation 
of the dependent variable. The fact that we can explain more variation in our Y in Model 
2 is not surprising given that Model 2 includes several additional statistically significant 
Xs, which clearly improved the overall ‘fit of the model’ to the data. 


